본문 바로가기 메인메뉴 바로가기

전자정부이 누리집은 대한민국 공식 전자정부 누리집입니다.

뉴스

콘텐츠 영역

버스 승객 하차 지점·인원 99%까지 예측 AI 개발

행안부·부산시, ‘AI 기반 승객하차 정보추정 분석모델’ 개발 완료

대중교통 노선 신설·조정 등에 활용…과학적 교통정책 토대 마련

2024.02.21 행정안전부
목록

버스승객 하차 인원과 지점을 99%까지 예측할 수 있는 AI모델이 개발됐다. 

이를 통해 대중교통 노선 운영 효율화 조치가 필요한 지자체의 대중교통 노선 개편에 활용도가 높을 것으로 기대된다.

서울시내 버스종합환승센터에서 시민들이 버스에서 승하차 하고 있다. ((ⓒ뉴스1, 무단 전재-재배포 금지)
서울시내 버스종합환승센터에서 시민들이 버스에서 승하차 하고 있다. ((ⓒ뉴스1, 무단 전재-재배포 금지)

행정안전부와 부산광역시는 합리적 대중교통 노선개편 지원을 위한 AI 기반 승객하차정보 추정 분석모델 개발을 완료했다고 21일 밝혔다.

이번에 개발한 모델은 승객 하차지점과 하차인원 추정을 통해 실제와 가까운 교통 수요량을 산출하고, 대중교통 잠재수요를 찾아내는 것을 주요 기능으로 설계했다.

AI 분석 모델은 총 3단계 과정을 통해 노선·정류장별 하차 인원을 99%까지 추정한다. 

1단계는 하차정보가 존재하는 승객 데이터를 AI가 학습해 예측 알고리즘(심층신경망, DNN)을 통해 하차정보가 없는 승객의 하차지점을 예측한다.

1단계 과정에서 하차지점 예측이 어려운 경우에는 2단계로 거주지 추정 방식(Home-based 분석)을 통해 하차를 예측한다. 

3단계는 동승자 이력 추적 방식이다. 동일 정류장에서 탑승한 타 승객들이 가장 많이 내린 정류장을 하차지점으로 추정하는 것이다. 

행안부는 교통카드 사용이력 데이터, 통신사 유동인구 데이터, 신용카드 사용데이터 등 약 3억 건의 공공·민간 데이터를 활용해 교통 잠재수요까지 도출했다.

17개 시도 버스 하차태그율

이는 기존 운영노선의 합리성 평가와 심야 버스 노선개설 등에 활용할 수 있다.

행안부는 이번에 개발한 모델이 지자체별 과학적 노선개편 과정에 널리 활용될 것으로 기대하고 있다.  

그동안 하차정보 부족으로 실제 교통수요가 반영된 노선개편에 어려움이 컸던 지자체가 데이터에 기반한 실질수요를 반영할 수 있는 기반을 마련해 주민 생활 편의성이 높아질 것으로 보인다.

정부도 대중교통 노선별 정확한 승객 규모를 토대로 실효성 있는 교통정책을 개발하는 데 활용할 수 있을 것으로 기대된다.

김준희 행안부 공공데이터국장은 “그동안 파악이 어려웠던 승객규모를 데이터 분석을 통해 찾아내 과학적 교통정책의 토대를 마련했다는 측면에서 의미가 크다”면서 “앞으로도 데이터를 통해 행정역량을 높이고 국민의 생활이 실질적으로 변화할 수 있도록 노력하겠다”고 밝혔다.

문의: 행정안전부 디지털정부실 통합데이터분석센터(044-205-2289), 부산광역시 디지털경제혁신실 빅데이터통계과(051-888-2545)

이전다음기사

다음기사농산물 온라인 도매시장 활성화 추진…유통비 절감

히단 배너 영역

추천 뉴스

윤석열정부 2년 민생을 위해 행동하는 정부
정부정책 사실은 이렇습니다

많이 본, 최신, 오늘의 영상 , 오늘의 사진

정책브리핑 게시물 운영원칙에 따라 다음과 같은 게시물은 삭제 또는 계정이 차단 될 수 있습니다.

  • 1. 타인의 메일주소, 전화번호, 주민등록번호 등의 개인정보 또는 해당 정보를 게재하는 경우
  • 2. 확인되지 않은 내용으로 타인의 명예를 훼손시키는 경우
  • 3. 공공질서 및 미풍양속에 위반되는 내용을 유포하거나 링크시키는 경우
  • 4. 욕설 및 비속어의 사용 및 특정 인종, 성별, 지역 또는 특정한 정치적 견해를 비하하는 용어를 게시하는 경우
  • 5. 불법복제, 바이러스, 해킹 등을 조장하는 내용인 경우
  • 6. 영리를 목적으로 하는 광고 또는 특정 개인(단체)의 홍보성 글인 경우
  • 7. 타인의 저작물(기사, 사진 등 링크)을 무단으로 게시하여 저작권 침해에 해당하는 글
  • 8. 범죄와 관련있거나 범죄를 유도하는 행위 및 관련 내용을 게시한 경우
  • 9. 공인이나 특정이슈와 관련된 당사자 및 당사자의 주변인, 지인 등을 가장 또는 사칭하여 글을 게시하는 경우
  • 10. 해당 기사나 게시글의 내용과 관련없는 특정 의견, 주장, 정보 등을 게시하는 경우
  • 11. 동일한 제목, 내용의 글 또는 일부분만 변경해서 글을 반복 게재하는 경우
  • 12. 기타 관계법령에 위배된다고 판단되는 경우
  • 13. 수사기관 등의 공식적인 요청이 있는 경우